If it's not what You are looking for type in the equation solver your own equation and let us solve it.
32+20x^2=752
We move all terms to the left:
32+20x^2-(752)=0
We add all the numbers together, and all the variables
20x^2-720=0
a = 20; b = 0; c = -720;
Δ = b2-4ac
Δ = 02-4·20·(-720)
Δ = 57600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{57600}=240$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-240}{2*20}=\frac{-240}{40} =-6 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+240}{2*20}=\frac{240}{40} =6 $
| 2v^2+4v=-10 | | 2v=7-5v=-17 | | 6n+4n+5-5=90 | | 90+(5a+6)+(7a)=180 | | 90+(5q+5)+(4q-5)=180 | | 77+(6z+1)=180 | | 50+(v-7)=180 | | 90+70+(9r+2)=180 | | (t-4)+(2t+7)+90=180 | | (t-4)+(2t+7)=180 | | 60+(9v+3)=180 | | (64.651+62.7+63.78)+n=270 | | 60+(6t)=180 | | 57+90+(8q+1)=180 | | 59+(8b+7)=180 | | 90+40=x | | x^+12=76 | | 3(y-6)+6y=27 | | 2=6v+5(v+7) | | 15=5w+5(w-5) | | 4y+3(2y+5)=11 | | 10y-7=22 | | 10y-7=22. | | 3(2m=5)=4(9-m) | | 10x^2-104x+150=0 | | 2x-30=2x-2 | | x+(2x/25)=15433 | | -x+21=1/2-11+17 | | -3v=15v=7+8v+43 | | 0.5+4y=8 | | 7x^2+66x+116=0 | | 0=50+10t-4.9t^2 |